
Optimizing Large Language Models: Learning
from Mistakes in Gameplay

Federica D’Alvano Kirakidis, Lily Gao, Aaron George, Alex Huang, Niv Levy
Mentors: Prof. Benjamin Von Roy, Yifan Zhu, Henry Widjaja

Abstract
In recent years, there has been a surge in research and public interest in Large Language Models
(LLMs), which have demonstrated remarkable potential across diverse applications and domains.
This paper provides a comprehensive survey of the applications of LLMs, particularly focusing
on their roles and capabilities within multi-agent systems (MAS). We utilized Gemini 1.5 Flash
by Google to introduce a benchmark for evaluating LLM learning based on mistakes in previous
data. Our findings reveal significant variations in LLM performance across different prompt
engineering strategies, enhancing our understanding of their strategic thinking in relation to
learning through game data. Additionally, we explore the complexities of extending LLM-based
self-supervised learning to MAS, emphasizing coordination and communication among agents.
By identifying underexplored areas and promising research directions, this survey lays the
groundwork for innovative research at the intersection of LLMs, game logic, and MAS,
advancing toward Artificial General Intelligence (AGI).

Background
Natural Language Processing (NLP) has revolutionized how machines understand and interact
with human language. At the core of NLP advancements, Large Language Models (LLMs) are
designed to process and generate human-like text. These models—such as GPT-4, BERT, and
Gemini—can perform numerous text-based tasks through training with large data samples,
ranging from translation to summarization.

The training process of NLP models involves exposing them to extensive datasets containing
diverse examples of natural human language. During this process, models learn patterns,
grammatical rules, and contextual relationships between words and phrases. However, to further
enhance the accuracy of these models, various techniques are used:

1. Adversarial Attacks: One common method to improve NLP models is through
adversarial attacks. These attacks involve slightly perturbing the input data in a way that
is imperceptible to humans but can lead to significant errors in model predictions. By
training models to withstand adversarial examples, researchers enhance their resilience
and reliability. This approach is crucial in applications where accuracy and robustness are



critical, such as financial models or autonomous systems. The Fast Gradient Sign Method
(FGSM) (Figure 1) is a popular technique that leverages the gradient of the loss function.
Then, it quantifies the amount of pixel values for a given image that must be changed to
prevent the language model from accurately identifying it. This process is demonstrated
in Figure 2 (TensorFlow).

2. Data Augmentation: Another technique for NLP improvement involves augmenting
training data with variations of existing examples, helping models improve generalization
and reliability with unseen data. Techniques like synonym replacement, random insertion,
and paraphrasing are commonly used to create augmented datasets.

3. Regularization Methods: Regularization techniques like dropout, weight decay, and
batch normalization are employed to prevent overfitting, ensuring that the model
performs well on both training and test datasets.

While traditional training methods focus on enhancing model architecture and training processes,
our research explores the optimization of LLMs through prompt engineering.

Prompt engineering involves crafting precise and effective prompts that guide the model to
produce desired outputs. By optimizing these prompts, we aim to enhance the model's
performance on specific tasks without altering the underlying model architecture (Tong, Yongqi,
et al., 2024). LLMs primarily operate with string inputs, limiting their ability to utilize traditional
methods like gradient-based adversarial attacks directly on non-text data. Techniques such as
FGSM and other adversarial strategies, while effective in highlighting vulnerabilities in image
models, are not directly applicable to LLMs. Thus, strategies like prompt engineering aim to
optimize LLM performance and robustness within the constraints of their text-based input



nature. We emphasize prompt engineering with various ways of instructing past data or omitting
this data entirely.

Methods
We devised four methods to test Tic Tac Toe gameplay optimization through prompt engineering.
All methods are based on the same structure of code: the “Agent,” or non-optimal player, plays
first (“X”) by calling upon the Google Gemini API to decide on moves (Google). Then, the
“Optimal Agent” (“O”), which is hard-coded to play the optimal move, plays opposite the Agent.
The Optimal Agent always either wins or forces a tie. For the fourth method, however, the Agent
plays against a “Near-Optimal Agent,” which chooses a random optimal move instead of the first
optimal move.

We tested every method in a series of five trials. Each trial was made up of ten games. For every
game, we recorded the final board, the order of plays, and the number of self-judged optimal
moves to better test the efficiency of the prompting (Figure 3, 4). We noted whether Agent
gameplay improved between rounds through not only statistical measurement but also through



human observation—Was the agent making the same mistakes or correcting them? Did it exhibit
patterns in optimal or non-optimal gameplay? Did it address specific issues tackled in prompts?

Basic Game Logistics & Optimal Agent:
Each of the nine spaces on the game board was assigned a number zero through eight to easily
define the grid state (occupied or unoccupied) in an array, as seen in Figure 5 (RealPython). The
Optimal Agent was hard-coded to play 100% optimally and then proven optimal through fifty
plays against a human (Figure 6). After deeming the Optimal Agent truly optimal, we played it
against the Agent in the first three methods and collected data.

Base Prompt:
To ensure an equal starting point for all methods, we developed a base prompt to build upon.
This prompt includes the game state (showing the occupied and unoccupied grids), the
instructions for Tic Tac Toe (including a description of the game format and the different ways
the Agent can lose), the role of the Agent as a player, and the valid JSON response format and
invalid response formats (Topsakal et al).



A preliminary trial with the basic prompt was gathered to act as a baseline to which the others
could be compared; this baseline resulted in a 100% loss rate for the Agent (Figure 8).

Prob. of Agent Prob. of Optimal # Agent Wins # Agent Losses # Ties Total Games

0 0.394 0 10 0 10

Method 1: Complexity
In the first method, we observed the relationship between the level of detail (character count) in
the Tic-Tac-Toe game instructions without game data and the improvement in Agent gameplay.
Added detail did not include explicit references to past gameplay, but rather general elaboration
on the Tic-Tac-Toe strategy (Nicholls). For example:

“Try to get three in a row diagonally, horizontally, or vertically. Block the other player from
getting three in a row horizontally, diagonally, or vertically. When choosing a move, you must
consider offensive strategies (trying to win) or defensive strategies (trying to block the other
player). (...)”

Method 2: Past Game Data - List Form
In the second method, we observed how listing past game data in the LLM prompt correlated
with improved Agent gameplay. The following instructions accompanied the game data: “​​Utilize
the following sequence of events from past games to develop a winning strategy, anticipate the



opponent's next move, block, strategize your moves, force ties, and prevent losses.” Game data
from the previous trial was collected and listed, resulting in ten data sets to be analyzed. Data
lists would purposefully include losses and ties to test whether the Agent could employ winning
strategies and avoid repeating mistakes.

The game data was written in a numbered list with some commentary on the move’s effect,
which winner won, and the specific grids within the winning line. (e.g. “X played grid 1,
blocking a row” ). (Figure 9)

Method 3: Past Game Data - Long-Form
In the third method, we followed the structure of Method 2, but placed game data in
paragraph-long instructions instead of structured lists, observing whether detailed data
explanations would correlate to optimized gameplay. For example:

“Game 1: You lost the game. First, you played grid 4. Your opponent played grid 0. You played
grid 7. The opponent played grid 1. You played grid 3 and failed to block your opponent from
winning three-in-a-row. Your opponent played grid 2, winning a row with a combination [0.0,
0.1, 0.2].”

Method 4: Near-Optimal Agent
In the fourth method, we followed the structure of Method 2 but played the Agent against a
Near-Optimal Agent. The Near-Optimal Agent selected a random optimal move instead of the
first choice of an optimal move, thus breaking away from the predictable patterns that the
Optimal Agent often displayed.

Results
All methods were tested through a series of five trials and a baseline trial with no prompt
engineering (Methods, Base Prompt). Each trial included ten Tic-Tac-Toe plays. For each trial
within a method, the following data was collected based on the ten plays: “Probability of Agent



Tie”, “Probability of Optimal Move”, “Number of Agent Wins”, “Number of Agent Losses”, and
“Number of Agent Ties”. For the fourth method, an additional “Probability of Agent Win” was
calculated.

The Probability of Agent Tie is based on the number of ties per trial between the Agent and the
Optimal Agent.

The Probability of Optimal Move is calculated based on the number of optimal moves and the
total number of moves made by the Agent per trial. A move is deemed optimal when the first
play is the center grid, the move blocks the Optimal Agent from winning, or the move opens up
the possibility of a three-in-a-row. If the move fails to meet the criteria, it is not deemed optimal.

The game boards from each play and the order of moves for each play were recorded, totaling
fifty boards per method to be analyzed for trends and used as data for prompts.

For Methods 1, 2, and 3, the Probability of Agent Tie was the deciding factor in whether the
Agent improved between each game. Since the Agent played against the Optimal Agent, a tie
would indicate that the Agent reached the same level of optimal play as its opposite. For Method
4, however, the Probability of Agent Win was the primary measure of optimal play because the
Agent played the Non-Optimal Agent and could win against it.

METHOD 1
Adding only to the complexity and number of sentences in the Agent instructions produced
minimal to no improvements in gameplay. The Probability of Agent Tie did not correlate with the
increase in character count for each successive trial. However, the Probability of Optimal Move
increased slightly across the five trials (Figure 10).



Often, the Agent and the Optimal Agent played the same series of moves, resulting in dozens of
repeated game boards (Figure 11). Sometimes, the Agent was able to force a tie. Thus, the
number of Agent Wins, Agent Losses, and Agent Ties did not clearly increase or decrease with
increased sentence complexity across the trials (Figure 12).

Increasing only the complexity (character count) of prompts for each trial likely did not improve
gameplay because the prompts explained strategies without reference to previous mistakes.
Furthermore, repeated game boards likely occurred because both the Agent and the Optimal
Agent resorted to familiar patterns of optimal play. Thus, the Agent likely did not “learn” from
previous trials, but instead received more general instruction. Overall, the use of this method did
not correlate with Agent optimization.



METHOD 2
Listing game data from the previous trial in the Agent instructions produced strong
improvements in gameplay, leading to optimal Agent gameplay in Trial 5. The Probability of
Agent Tie increased with each game trial, reaching 1. The Probability of Optimal Move also
increased with each game trial and reached 1 (Figure 13).

Initially, the Agent and the Optimal Agent played many of the same series of moves, resulting in
dozens of repeated game boards (Figure 14). Over time, however, patterns of ties were repeated
until the Agent and the Optimal Agent only played ties in the last trial. The number of Agent
Wins remained at 0; the number of Agent Ties increased and reached 1; the number of Agent
Losses decreased and reached 0 (Figure 15). By Trial 5, the Agent played 100% optimally.



Including listed game data in the Agent prompt for each trial correlates with improved and even
optimized gameplay. Providing information on previous patterns may have allowed the Agent to
better assess board states and develop strategies for optimal play; thus, orders of moves that
produced a tie could be repeated. The simple, listed structure of the game data may have also
aided NLP efficiency in comprehending the prompts. Overall, this method correlates positively
with Agent optimization.

METHOD 3
Explaining game data from the previous trial in the Agent instructions produced minimal
improvements in Agent gameplay. The Probability of Agent Tie increased within the first two
trials, but reached a plateau and decreased slightly across the latter three. The Probability of
Optimal Move increased in the second trial and immediately decreased generally showing no
consistent pattern of increase or decrease throughout the other trials (Figure 16).



The Agent and the Optimal Agent played many of the same series of moves, resulting in dozens
of repeated game boards. Certain game boards with more optimal Agent moves became more
common as the trial number increased (Figure 17). However, the number of Agent Wins, Agent
Losses, and Agent Ties did not clearly increase or decrease across the five trials (Figure 18).

Including written game data for each trial did not correlate to improved gameplay. One potential
reason behind the discrepancy between this method and the previous could lie within the format
of the game data; data explained in sentences could have contained added complexity, widening
the margin of error for NLP interpretation. Thus, the Agent may not have comprehended the bulk
of the game data because it was relayed inefficiently. Overall, the use of this method did not
correlate with Agent optimization.



METHOD 4
Listing game data from the previous trial in the Agent instructions (Method 2) as the Agent
played against a Near-Optimal Agent produced strong improvements in gameplay, leading to
optimal gameplay in Trial 5. The Probability of Agent Win increased and reached 1 in Trial 5.
The Probability of Optimal Move increased slightly across all five trials. The Probability of
Agent Tie increased, then decreased and reached 0. (Figure 19)

The Agent and the Near-Optimal Agent played several repeated series of moves; however, the
game boards varied greatly (Figure 20). The number of Agent Wins increased and reached 1
while the number of Agent Losses and Agent Ties decreased and reached 0. (Figure 21). By Trial
5, the Agent played 100% optimally.



As with Method 2, including listed game data in the Agent prompt for each trial correlates with
improved and even optimized gameplay. Playing the Agent against a Near-Optimal Agent
resulted in vastly different game boards, repeated patterns, and possibilities of optimal moves,
providing a diversity of data that could have greatly assisted Agent learning. Initially, both agents
appeared evenly matched, but with each trial, the tested Agent gained a clear advantage. Overall,
this method correlates positively with Agent optimization.

Conclusions
In summary, Method 2 and Method 4 had the strongest correlation with optimized gameplay.
Both methods utilized simple game data lists with short analyses of moves from each previous
trial, allowing the Agent to “learn” from previous patterns of play. Method 1 and Method 3 did
not clearly correlate with optimized gameplay. Both methods utilized sentence-based prompting
that was relatively complex compared to the two successful methods. Thus, listed data within
clear structures (refer to Method 2: Past Game Data List Form) are linked to the greatest
improvement in Agent gameplay out of the four methods.

Ultimately, the findings demonstrate the effectiveness of careful, strategic, but simple prompt
engineering in significantly enhancing LLM game logic performance. The initial untrained LLM
played mostly nonoptimal moves and appeared to lack strategy. However, once the LLM was
prompted specifically with past game data, its reasoning skills drastically improved, resulting in
increasingly optimized gameplay. The straightforward nature of our research allowed us to
swiftly observe gameplay data and trends. Our findings open up new applications for LLM
prompt engineering, including complex game calculations, educational tools for logic and critical
thinking, assistive human-like agents, and simulation training.



Future Research
Future research will generalize our findings to more complex tasks and applications, including
board games like Chess and Monopoly. Integrating emotion and sentiment analysis would enable
LLMs to adjust their game decision-making based on emotional context, assuming human-like
gameplay. In a broader sense, equipping LLMs with critical thinking skills and mistake-learning
could prepare them to provide practical assistance to humans, specifically for elderly individuals
or individuals with disabilities.

Artificial intelligence presents an exciting future. However, to improve our lives, AI must begin
by improving itself.

References
Google. “Prompt Design Strategies.” Google AI for Developers, 1 Aug. 2024,

ai.google.dev/gemini-api/docs/prompting-strategies.

Nicholls, Leon. “Tic-Tac-Toe and the Art of Gemini Prompt Engineering.” Medium, Medium, 7

Mar. 2024,

leonnicholls.medium.com/tic-tac-toe-and-the-art-of-gemini-prompt-engineering-0b0dfa4

7e733. Accessed 10 Aug. 2024.

RealPython. “Build a Tic-Tac-Toe Game with Python and Tkinter – Real Python.”
Realpython.com, 2022, realpython.com/tic-tac-toe-python/.

TensorFlow. “Adversarial Example Using FGSM | TensorFlow Core.” TensorFlow, 19 July 2024,
www.tensorflow.org/tutorials/generative/adversarial_fgsm.

Tong, Yongqi, et al. “Can LLMs Learn from Previous Mistakes? Investigating LLMs’ Errors to
Boost for Reasoning.” ArXiv (Cornell University), 29 Mar. 2024,
https://doi.org/10.48550/arxiv.2403.20046. Accessed 4 Aug. 2024.

Topsakal, Oguzhan, et al. “Evaluating Large Language Models with Grid-Based Game
Competitions: An Extensible LLM Benchmark and Leaderboard.” arXiv, 11 July 2024,
arxiv.org/pdf/2407.07796.




